在读linux内核中关于时钟部分的代码时,遇到了一个叫SH_DIV的宏,它包含的
技巧颇为有趣。自己写代码时可能用得到。
下面是这个宏的注释和定义:
/* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can
* improve accuracy by shifting LSH bits, hence calculating:
* (NOM << LSH) / DEN
* This however means trouble for large NOM, because (NOM << LSH) may no
* longer fit in 32 bits. The following way of calculating this gives us
* some slack, under the following conditions:
* - (NOM / DEN) fits in (32 - LSH) bits.
* - (NOM % DEN) fits in (32 - LSH) bits.
*/
#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
+ ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
计算 (N << L) / D,可以等价于下面的算式:
(N / D) << L + ( (N % D) << L + (D / 2) ) / D
下面是推导过程:
N = (N / D) * D + (N % D)
N << L = N * 2^L
= ( (N / D) * D + (N % D) ) * 2^L
= (N / D) * D * 2^L + (N % D) * 2^L
(N << L) / D = ( (N / D) * D * 2^L + (N % D) * 2^L ) / D
= ( (N / D) * D * 2^L ) / D + ( (N % D) * 2^L ) / D
= (N / D) * 2^L + ( (N % D) * 2^L ) / D
= (N / D) << L + ( (N % D) << L ) / D
这时与最终的等式只差一个(D / 2),当在C语言中进行除法运算(N / D)时,结
果总是向下取整,余数部分全都被舍去了,因此,在计算除法前给被除数加上除
数的一半,可以起到四舍五入的效果,即:(N + (D / 2)) / D。
所以,在前面推导过程的最后一步时,在除以D前要加上(D / 2),即:
(N << L) / D = (N / D) << L + ( (N % D) << L + (D / 2) ) / D
技巧颇为有趣。自己写代码时可能用得到。
下面是这个宏的注释和定义:
/* Suppose we want to devide two numbers NOM and DEN: NOM/DEN, the we can
* improve accuracy by shifting LSH bits, hence calculating:
* (NOM << LSH) / DEN
* This however means trouble for large NOM, because (NOM << LSH) may no
* longer fit in 32 bits. The following way of calculating this gives us
* some slack, under the following conditions:
* - (NOM / DEN) fits in (32 - LSH) bits.
* - (NOM % DEN) fits in (32 - LSH) bits.
*/
#define SH_DIV(NOM,DEN,LSH) ( (((NOM) / (DEN)) << (LSH)) \
+ ((((NOM) % (DEN)) << (LSH)) + (DEN) / 2) / (DEN))
计算 (N << L) / D,可以等价于下面的算式:
(N / D) << L + ( (N % D) << L + (D / 2) ) / D
下面是推导过程:
N = (N / D) * D + (N % D)
N << L = N * 2^L
= ( (N / D) * D + (N % D) ) * 2^L
= (N / D) * D * 2^L + (N % D) * 2^L
(N << L) / D = ( (N / D) * D * 2^L + (N % D) * 2^L ) / D
= ( (N / D) * D * 2^L ) / D + ( (N % D) * 2^L ) / D
= (N / D) * 2^L + ( (N % D) * 2^L ) / D
= (N / D) << L + ( (N % D) << L ) / D
这时与最终的等式只差一个(D / 2),当在C语言中进行除法运算(N / D)时,结
果总是向下取整,余数部分全都被舍去了,因此,在计算除法前给被除数加上除
数的一半,可以起到四舍五入的效果,即:(N + (D / 2)) / D。
所以,在前面推导过程的最后一步时,在除以D前要加上(D / 2),即:
(N << L) / D = (N / D) << L + ( (N % D) << L + (D / 2) ) / D